Linguistically Regularized LSTM for Sentiment Classification

نویسندگان

  • Qiao Qian
  • Minlie Huang
  • Jinhao Lei
  • Xiaoyan Zhu
چکیده

This paper deals with sentence-level sentiment classification. Though a variety of neural network models have been proposed recently, however, previous models either depend on expensive phrase-level annotation, most of which has remarkably degraded performance when trained with only sentence-level annotation; or do not fully employ linguistic resources (e.g., sentiment lexicons, negation words, intensity words). In this paper, we propose simple models trained with sentence-level annotation, but also attempt to model the linguistic role of sentiment lexicons, negation words, and intensity words. Results show that our models are able to capture the linguistic role of sentiment words, negation words, and intensity words in sentiment expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linguistically Regularized LSTMs for Sentiment Classification

Sentiment understanding has been a long-term goal of AI in the past decades. This paper deals with sentence-level sentiment classification. Though a variety of neural network models have been proposed very recently, however, previous models either depend on expensive phrase-level annotation, whose performance drops substantially when trained with only sentence-level annotation; or do not fully ...

متن کامل

CS 224D Final Project: Neural Network Ensembles for Sentiment Classification

We investigate the effect of ensembling on two simple models: LSTM and bidirectional LSTM. These models are used for fine-grained sentiment classification on the Stanford Sentiment Treebank dataset. We observe that ensembling improves the classification accuracy by about 3% over single models. Moreover, the more complex model, bidirectional LSTM, benefits more from ensembling.

متن کامل

Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model

Dimensional sentiment analysis aims to recognize continuous numerical values in multiple dimensions such as the valencearousal (VA) space. Compared to the categorical approach that focuses on sentiment classification such as binary classification (i.e., positive and negative), the dimensional approach can provide more fine-grained sentiment analysis. This study proposes a regional CNN-LSTM mode...

متن کامل

YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction

The sentiment analysis in this task aims to indicate the sentiment intensity of the four emotions (e.g. anger, fear, joy, and sadness) expressed in tweets. Compared to the polarity classification, such intensity prediction can provide more finegrained sentiment analysis. In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to c...

متن کامل

Conquering vanishing gradient: Tensor Tree LSTM on aspect-sentiment classification

Our project focus on the problem of aspect specific sentiment analysis using recursive neural networks. Different from the previous studies where labels exist on every node of constituency tree, we have only one label each sentence, which is only on the root node, and it causes a severe vanishing gradient problem for both RNN and RNTN. To deal with such problem, we develop a classification algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017